Diesel Engine In Locomotive

Home Diesel Engine In Locomotive

The modern diesel locomotive is a self contained version of the electric locomotive.  Like the electric locomotive, it has electric drive, in the form of traction motors driving the axles and controlled with electronic controls.  It also has many of the same auxiliary systems for cooling, lighting, heating, braking and hotel power (if required) for the train.  It can operate over the same routes (usually) and can be operated by the same drivers.  It differs principally in that it carries its own generating station around with it, instead of being connected to a remote generating station through overhead wires or a third rail.  The generating station consists of a large diesel engine coupled to an alternator producing the necessary electricity.  A fuel tank is also essential.  It is interesting to note that the modern diesel locomotive produces about 35% of the power of a electric locomotive of similar weight.

Diesel-Electric Types

Like an automobile, a diesel locomotive cannot start itself directly from a stand. It will not develop maximum power at idling speed, so it needs some form of transmission system to multiply torque when starting. It will also be necessary to vary the power applied according to the train weight or the line gradient.  There are three methods of doing this:  mechanical, hydraulic or electric.  Most diesel locomotives use electric transmission and are called “diesel-electric” locomotives. Mechanical and hydraulic transmissions are still used but are more common on multiple unit trains or lighter locomotives.

Diesel-electric locomotives come in three varieties, according to the period in which they were designed.  These three are:

DC – DC (DC generator supplying DC traction motors);
AC – DC (AC alternator output rectified to supply DC motors) and
AC – DC – AC (AC alternator output rectified to DC and then inverted to 3-phase AC for the traction motors).

The DC – DC type has a generator supplying the DC traction motors through a resistance control system, the AC – DC type has an alternator producing AC current which is rectified to DC and then supplied to the DC traction motors and, finally, the most modern has the AC alternator output being rectified to DC and then converted to AC (3-phase) so that it can power the 3-phase AC traction motors. Although this last system might seem the most complex, the gains from using AC motors far outweigh the apparent complexity of the system. In reality, most of the equipment uses solid state power electronics with microprocessor-based controls. For more details on AC and DC traction.

In the US, traction alternators (AC) were introduced with the 3000 hp single diesel engine locomotives, the first being the Alco C630. The SD40, SD45 and GP40 also had traction alternators only. On the GP38, SD38, GP39, and SD39s, traction generators (DC) were standard, and traction alternators were optional, until the dash-2 era, when they became standard. It was a similar story at General Electric.

There is one traction alternator (or generator) per diesel engine in a locomotive (standard North American practice anyway). The Alco C628 was the last locomotive to lead the horsepower race with a DC traction alternator.

The diagram  shows the main parts of a US-built diesel-electric locomotive and these are described in the following paragraphs. I have used the US example because of the large number of countries which use them. There are obviously many variations in layout and European practice differs in many ways and we will note some of these in passing.

Diesel Engine

This is the main power source for the locomotive. It comprises a large cylinder block, with the cylinders arranged in a straight line or in a V. The engine rotates the drive shaft at up to 1,000 rpm and this drives the various items needed to power the locomotive.  As the transmission is normally electric, the engine is used as the power source for the alternator that produces the electrical energy to drive the locomotive.

Main Alternator

The diesel engine drives the main alternator which provides the power to move the train.  The alternator generates AC electricity which is used to provide power for the traction motors mounted on the trucks (bogies).  In older locomotives, the alternator was a DC machine, called a generator.  It produced direct current which was used to provide power for DC traction motors.  Many of these machines are still in regular use.  The next development was the replacement of the generator by the alternator but still using DC traction motors.  The AC output is rectified to give the DC required for the motors.  For more details on AC and DC traction, see the Electronic Power Page on this site.

Auxiliary Alternator

Locomotives used to operate passenger trains are equipped with an auxiliary alternator.  This provides AC power for lighting, heating, air conditioning, dining facilities etc. on the train.  The output is transmitted along the train through an auxiliary power line.  In the US, it is known as “head end power” or “hotel power”. In the UK, air conditioned passenger coaches get what is called electric train supply (ETS) from the auxiliary alternator.

Motor Blower

The diesel engine also drives a motor blower. As its name suggests, the motor blower provides air which is blown over the traction motors to keep them cool during periods of heavy work. The blower is mounted inside the locomotive body but the motors are on the trucks, so the blower output is connected to each of the motors through flexible ducting.  The blower output also cools the alternators.  Some designs have separate blowers for the group of motors on each truck and others for the alternators.  Whatever the arrangement, a modern locomotive has a complex air management system which monitors the temperature of the various rotating machines in the locomotive and adjusts the flow of air accordingly.

Air Intakes

The air for cooling the locomotive’s motors is drawn in from outside the locomotive.  It has to be filtered to remove dust and other impurities and its flow regulated by temperature, both inside and outside the locomotive.  The air management system has to take account of the wide range of temperatures from the possible +40°C of summer to the possible -40°C of winter.

Rectifiers/Inverters

The output from the main alternator is AC but it can be used in a locomotive with either DC or AC traction motors.  DC motors were the traditional type used for many years but, in the last 10 years, AC motors have become standard for new locomotives.  They are cheaper to build and cost less to maintain and, with electronic management can be very finely controlled.  To see more on the difference between DC and AC traction technology try the Electronic Power Page on this site.

To convert the AC output from the main alternator to DC, rectifiers are required.  If the motors are DC, the output from the rectifiers is used directly.  If the motors are AC, the DC output from the rectifiers is converted to 3-phase AC for the traction motors.

In the US, there are some variations in how the inverters are configured. GM EMD relies on one inverter per truck, while GE uses one inverter per axle – both systems have their merits. EMD’s system links the axles within each truck in parallel, ensuring wheel slip control is maximised among the axles equally. Parallel control also means even wheel wear even between axles. However, if one inverter (i.e. one truck) fails then the unit is only able to produce 50 per cent of its tractive effort. One inverter per axle is more complicated, but the GE view is that individual axle control can provide the best tractive effort. If an inverter fails, the tractive effort for that axle is lost, but full tractive effort is still available through the other five inverters. By controlling each axle individually, keeping wheel diameters closely matched for optimum performance is no longer necessary. This paragraph sourced from e-mail by unknown correspondent 3 November 1997.

Electronic Controls

Almost every part of the modern locomotive’s equipment has some form of electronic control. These are usually collected in a control cubicle near the cab for easy access. The controls will usually include a maintenance management system of some sort which can be used to download data to a portable or hand-held computer.

Control Stand

This is the principal man-machine interface, known as a control desk in the UK or control stand in the US.  The common US type of stand is positioned at an angle on the left side of the driving position and, it is said, is much preferred by drivers to the modern desk type of control layout usual in Europe and now being offered on some locomotives in the US.

Cab

The standard configuration of US-designed locomotives is to have a cab at one end of the locomotive only. Since most the US structure gauge is large enough to allow the locomotive to have a walkway on either side, there is enough visibility for the locomotive to be worked in reverse. However, it is normal for the locomotive to operate with the cab forwards. In the UK and many European countries, locomotives are full width to the structure gauge and cabs are therefore provided at both ends.

Batteries

Just like an automobile, the diesel engine needs a battery to start it and to provide electrical power for lights and controls when the engine is switched off and the alternator is not running.

Traction Motor

Since the diesel-electric locomotive uses electric transmission, traction motors are provided on the axles to give the final drive.  These motors were traditionally DC but the development of modern power and control electronics has led to the introduction of 3-phase AC motors.  For a description of how this technology works, go to the Electronic Power Page on this site.  There are between four and six motors on most diesel-electric locomotives.  A modern AC motor with air blowing can provide up to 1,000 hp.

Pinion/Gear

The traction motor drives the axle through a reduction gear of a range between 3 to 1 (freight) and 4 to 1 (passenger).

Fuel Tank

A diesel locomotive has to carry its own fuel around with it and there has to be enough for a reasonable length of trip.  The fuel tank is normally under the loco frame and will have a capacity of say 1,000 imperial gallons (UK Class 59, 3,000 hp) or 5,000 US gallons in a General Electric AC4400CW 4,400 hp locomotive.  The new AC6000s have 5,500 gallon tanks.  In addition to fuel, the locomotive will carry around, typically about 300 US gallons of cooling water and 250 gallons of lubricating oil for the diesel engine.

Air Reservoirs

Air reservoirs containing compressed air at high pressure are required for the train braking and some other systems on the locomotive.  These are often mounted next to the fuel tank under the floor of the locomotive.

Air Compressor

The air compressor is required to provide a constant supply of compressed air for the locomotive and train brakes.  In the US, it is standard practice to drive the compressor off the diesel engine drive shaft.  In the UK, the compressor is usually electrically driven and can therefore be mounted anywhere.  The Class 60 compressor is under the frame, whereas the Class 37 has the compressors in the nose.

Drive Shaft

The main output from the diesel engine is transmitted by the drive shaft to the alternators at one end and the radiator fans and compressor at the other end.

Gear Box

The radiator and its cooling fan is often located in the roof of the locomotive.  Drive to the fan is therefore through a gearbox to change the direction of the drive upwards.

Radiator and Radiator Fan

The radiator works the same way as in an automobile.  Water is distributed around the engine block to keep the temperature within the most efficient range for the engine.  The water is cooled by passing it through a radiator blown by a fan driven by the diesel engine.  See Cooling for more information.

Turbo Charging

The amount of power obtained from a cylinder in a diesel engine depends on how much fuel can be burnt in it.  The amount of fuel which can be burnt depends on the amount of air available in the cylinder.  So, if you can get more air into the cylinder, more fuel will be burnt and you will get more power out of your ignition.  Turbo charging is used to increase the amount of air pushed into each cylinder.  The turbocharger is driven by exhaust gas from the engine.  This gas drives a fan which, in turn, drives a small compressor which pushes the additional air into the cylinder.  Turbocharging gives a 50% increase in engine power.

The main advantage of the turbocharger is that it gives more power with no increase in fuel costs because it uses exhaust gas as drive power.  It does need additional maintenance, however, so there are some type of lower power locomotives which are built without it.

Sand Box

Locomotives always carry sand to assist adhesion in bad rail conditions.  Sand is not often provided on multiple unit trains because the adhesion requirements are lower and there are normally more driven axles.

Mechanical Transmission

A diesel-mechanical locomotive is the simplest type of diesel locomotive.  It has a direct mechanical link between the diesel engine and the wheels instead of electric transmission.  The diesel engine is usually in the 350-500 hp range and the transmission is similar to that of an automobile with a four speed gearbox.  Other parts are similar to the diesel-electric locomotive but there are some variations and often the wheels are coupled.

Fluid Coupling

In a diesel-mechanical transmission, the main drive shaft is coupled to the engine by a fluid coupling.  This is a hydraulic clutch, consisting of a case filled with oil, a rotating disc with curved blades driven by the engine and another connected to the road wheels.  As the engine turns the fan, the oil is driven by one disc towards the other.  This turns under the force of the oil and thus turns the drive shaft.  Of course, the start up is gradual until the fan speed is almost matched by the blades.  The whole system acts like an automatic clutch to allow a graduated start for the locomotive.

Gearbox

This does the same job as that on an automobile.  It varies the gear ratio between the engine and the road wheels so that the appropriate level of power can be applied to the wheels.  Gear change is manual.  There is no need for a separate clutch because the functions of a clutch are already provided in the fluid coupling.

Final Drive

The diesel-mechanical locomotive uses a final drive similar to that of a steam engine.  The wheels are coupled to each other to provide more adhesion.  The output from the 4-speed gearbox is coupled to a final drive and reversing gearbox which is provided with a transverse drive shaft and balance weights.  This is connected to the driving wheels by connecting rods.

Hydraulic Transmission

Hydraulic transmission works on the same principal as the fluid coupling but it allows a wider range of “slip” between the engine and wheels.  It is known as a “torque converter”.  When the train speed has increased sufficiently to match the engine speed, the fluid is drained out of the torque converter so that the engine is virtually coupled directly to the locomotive wheels.  It is virtually direct because the coupling is usually a fluid coupling, to give some “slip”.  Higher speed locomotives use two or three torque converters in a sequence similar to gear changing in a mechanical transmission and some have used a combination of torque converters and gears.

Some designs of diesel-hydraulic locomotives had two diesel engines and two transmission systems, one for each bogie.  The design was poplar in Germany (the V200 series of locomotives, for example) in the 1950s and was imported into parts of the UK in the 1960s.  However, it did not work well in heavy or express locomotive designs and has largely been replaced by diesel-electric transmission.

Wheel Slip

Wheels slip is the bane of the driver trying to get a train away smoothly.  The tenuous contact between steel wheel and steel rail is one of the weakest parts of the railway system.  Traditionally, the only cure has been a combination of the skill of the driver and the selective use of sand to improve the adhesion.  Today, modern electronic control has produced a very effective answer to this age old problem.  The system is called creep control.

Extensive research into wheel slip showed that, even after a wheelset starts to slip, there is still a considerable amount of useable adhesion available for traction.  The adhesion is available up to a peak, when it will rapidly fall away to an uncontrolled spin.  Monitoring the early stages of slip can be used to adjust the power being applied to the wheels so that the adhesion is kept within the limits of the “creep” towards the peak level before the uncontrolled spin sets in.

The slip is measured by detecting the locomotive speed by Doppler radar (instead of the usual method using the rotating wheels) and comparing it to the motor current to see if the wheel rotation matches the ground speed. If there is a disparity between the two, the motor current is adjusted to keep the slip within the “creep” range and keep the tractive effort at the maximum level possible under the creep conditions.

Diesel Multiple Units (DMUs)

The diesel engines used in DMUs work on exactly the same principles as those used in locomotives, except that the transmission is normally mechanical with some form of gear change system.  DMU engines are smaller and several are used on a train, depending on the configuration.  The diesel engine is often mounted under the car floor and on its side because of the restricted space available.  Vibration being transmitted into the passenger saloon has always been a problem but some of the newer designs are very good in this respect.

There are some diesel-electric DMUs around and these normally have a separate engine compartment containing the engine and the generator or alternator.

Diesel Engine Background

The diesel engine was first patented by Dr Rudolf Diesel (1858-1913) in Germany in 1892 and he actually got a successful engine working by 1897.  By 1913, when he died, his engine was in use on locomotives and he had set up a facility with Sulzer in Switzerland to manufacture them.  His death was mysterious in that he simply disappeared from a ship taking him to London.

The diesel engine is a compression-ignition engine, as opposed to the petrol (or gasoline) engine, which is a spark-ignition engine.  The spark ignition engine uses an electrical spark from a “spark plug” to ignite the fuel in the engine’s cylinders, whereas the fuel in the diesel engine’s cylinders is ignited by the heat caused by air being suddenly compressed in the cylinder.  At this stage, the air gets compressed into an area 1/25th of its original volume.  This would be expressed as a compression ratio of 25 to 1.  A compression ratio of 16 to 1 will give an air pressure of 500 lbs/in² (35.5 bar) and will increase the air temperature to over 800°F (427°C).

The advantage of the diesel engine over the petrol engine is that it has a higher thermal capacity (it gets more work out of the fuel), the fuel is cheaper because it is less refined than petrol and it can do heavy work under extended periods of overload.  It can however, in a high speed form, be sensitive to maintenance and noisy, which is why it is still not popular for passenger automobiles.

Diesel Engine Types

There are two types of diesel engine, the two-stroke engine and the four-stroke engine.  As the names suggest, they differ in the number of movements of the piston required to complete each cycle of operation.  The simplest is the two-stroke engine.  It has no valves.  The exhaust from the combustion and the air for the new stroke is drawn in through openings in the cylinder wall as the piston reaches the bottom of the downstroke.  Compression and combustion occurs on the upstroke.  As one might guess, there are twice as many revolutions for the two-stroke engine as for equivalent power in a four-stroke engine.

The four-stroke engine works as follows:  Downstroke 1 – air intake, upstroke 1 – compression, downstroke 2 – power, upstroke 2 – exhaust.  Valves are required for air intake and exhaust, usually two for each.  In this respect it is more similar to the modern petrol engine than the 2-stroke design.

In the UK, both types of diesel engine were used but the 4-stroke became the standard.  The UK Class 55 “Deltic” (not now in regular main line service) unusually had a two-stroke engine.  In the US, the General Electric (GE) built locomotives have 4-stroke engines whereas General Motors (GM) always used 2-stroke engines until the introduction of their SD90MAC 6000 hp “H series” engine, which is a 4-stroke design.

The reason for using one type or the other is really a question of preference.  However, it can be said that the 2-stroke design is simpler than the 4-stroke but the 4-stroke engine is more fuel efficient.

Size Does Count

Basically, the more power you need, the bigger the engine has to be.  Early diesel engines were less than 100 horse power (hp) but today the US is building 6000 hp locomotives.  For a UK locomotive of 3,300 hp (Class 58), each cylinder will produce about 200 hp, and a modern engine can double this if the engine is turbocharged.

The maximum rotational speed of the engine when producing full power will be about 1000 rpm (revolutions per minute) and the engine will idle at about 400 rpm.  These relatively low speeds mean that the engine design is heavy, as opposed to a high speed, lightweight engine.  However, the UK HST (High Speed Train, developed in the 1970s) engine has a speed of 1,500 rpm and this is regarded as high speed in the railway diesel engine category.  The slow, heavy engine used in railway locomotives will give low maintenance requirements and an extended life.

There is a limit to the size of the engine which can be accommodated within the railway loading gauge, so the power of a single locomotive is limited.  Where additional power is required, it has become usual to add locomotives.  In the US, where freight trains run into tens of thousands of tons weight, four locomotives at the head of a train are common and several additional ones in the middle or at the end are not unusual.

To V or not to V

Diesel engines can be designed with the cylinders “in-line”, “double banked” or in a “V”.  The double banked engine has two rows of cylinders in line.  Most diesel locomotives now have V form engines.  This means that the cylinders are split into two sets, with half forming one side of the V.  A V8 engine has 4 cylinders set at an angle forming one side of the V with the other set of four forming the other side.  The crankshaft, providing the drive, is at the base of the V.  The V12 was a popular design used in the UK.  In the US, V16 is usual for freight locomotives and there are some designs with V20 engines.

Engines used for DMU (diesel multiple unit) trains in the UK are often mounted under the floor of the passenger cars.  This restricts the design to in-line engines, which have to be mounted on their side to fit in the restricted space.

An unusual engine design was the UK 3,300 hp Class 55 locomotive, which had the cylinders arranged in three sets of opposed Vs in a triangle, in the form of an upturned delta, hence the name “Deltic”.

Tractive Effort, Pull and Power

Before going too much further, we need to understand the definitions of tractive effort, drawbar pull and power.  The definition of tractive effort (TE) is simply the force exerted at the wheel rim of the locomotive and is usually expressed in pounds (lbs) or kilo Newtons (kN).  By the time the tractive effort is transmitted to the coupling between the locomotive and the train, the drawbar pull, as it is called will have reduced because of the friction of the mechanical parts of the drive and some wind resistance.

Power is expressed as horsepower (hp) or kilo Watts (kW) and is actually a rate of doing work.  A unit of horsepower is defined as the work involved by a horse lifting 33,000 lbs one foot in one minute.  In the metric system it is calculated as the power (Watts) needed when one Newton of force is moved one metre in one second.  The formula is P = (F*d)/t where P is power, F is force, d is distance and t is time.  One horsepower equals 746 Watts.

The relationship between power and drawbar pull is that a low speed and a high drawbar pull can produce the same power as high speed and low drawbar pull.  If you need to increase higher tractive effort and high speed, you need to increase the power.  To get the variations needed by a locomotive to operate on the railway, you need to have a suitable means of transmission between the diesel engine and the wheels.

One thing worth remembering is that the power produced by the diesel engine is not all available for traction.  In a 2,580 hp diesel electric locomotive, some 450 hp is lost to on-board equipment like blowers, radiator fans, air compressors and “hotel power” for the train.

Starting

A diesel engine is started (like an automobile) by turning over the crankshaft until the cylinders “fire” or begin combustion.  The starting can be done electrically or pneumatically.  Pneumatic starting was used for some engines.  Compressed air was pumped into the cylinders of the engine until it gained sufficient speed to allow ignition, then fuel was applied to fire the engine.  The compressed air was supplied by a small auxiliary engine or by high pressure air cylinders carried by the locomotive.

Electric starting is now standard.  It works the same way as for an automobile, with batteries providing the power to turn a starter motor which turns over the main engine.  In older locomotives fitted with DC generators instead of AC alternators, the generator was used as a starter motor by applying battery power to it.

Fuel Injection

Ignition is a diesel engine is achieved by compressing air inside a cylinder until it gets very hot (say 400°C, almost 800°F) and then injecting a fine spray of fuel oil to cause a miniature explosion.  The explosion forces down the piston in the cylinder and this turns the crankshaft.  To get the fine spray needed for successful ignition the fuel has to be pumped into the cylinder at high pressure.  The fuel pump is operated by a cam driven off the engine.  The fuel is pumped into an injector, which gives the fine spray of fuel required in the cylinder for combustion.

Fuel Control

In an petrol engine, the power is controlled by the amount of fuel/air mixture applied to the cylinder.  The mixture is mixed outside the cylinder and then applied by a throttle valve. In a diesel engine the amount of air applied to the cylinder is constant so power is regulated by varying the fuel input. The fine spray of fuel injected into each cylinder has to be regulated to achieve the amount of power required. Regulation is achieved by varying the fuel sent by the fuel pumps to the injectors.

The amount of fuel being applied to the cylinders is varied by altering the effective delivery rate of the piston in the injector pumps. Each injector has its own pump, operated by an engine-driven cam, and the pumps are aligned in a row so that they can all be adjusted together. The adjustment is done by a toothed rack (called the “fuel rack”) acting on a toothed section of the pump mechanism.  As the fuel rack moves, so the toothed section of the pump rotates and provides a drive to move the pump piston round inside the pump. Moving the piston round, alters the size of the channel available inside the pump for fuel to pass through to the injector delivery pipe.

The fuel rack can be moved either by the driver operating the power controller in the cab or by the governor.  If the driver asks for more power, the control rod moves the fuel rack to set the pump pistons to allow more fuel to the injectors.  The engine will increase power and the governor will monitor engine speed to ensure it does not go above the predetermined limit.  The limits are fixed by springs (not shown) limiting the weight movement.

Engine Control Development

So far we have seen a simple example of diesel engine control but the systems used by most locomotives in service today are more sophisticated. To begin with, the drivers control was combined with the governor and hydraulic control was introduced. One type of governor uses oil to control the fuel racks hydraulically and another uses the fuel oil pumped by a gear pump driven by the engine. Some governors are also linked to the turbo charging system to ensure that fuel does not increase before enough turbocharged air is available. In modern systems, the governor is electronic and is part of a complete engine management system.

Power Control

The diesel engine in a diesel-electric locomotive provides the drive for the main alternator which, in turn, provides the power required for the traction motors.  We can see from this therefore, that the power required from the diesel engine is related to the power required by the motors.  So, if we want more power from the motors, we must get more current from the alternator so the engine needs to run faster to generate it.  Therefore, to get the optimum performance from the locomotive, we must link the control of the diesel engine to the power demands being made on the alternator.

In the days of generators, a complex electro-mechanical system was developed to achieve the feedback required to regulate engine speed according to generator demand. The core of the system was a load regulator, basically a variable resistor which was used to very the excitation of the generator so that its output matched engine speed.  The control sequence (simplified) was as follows:

1.  Driver moves the power controller to the full power position
2.  An air operated piston actuated by the controller moves a lever, which closes a switch to supply a low voltage to the load regulator motor.
3.  The load regulator motor moves the variable resistor to increase the main generator field strength and therefore its output.
4.  The load on the engine increases so its speed falls and the governor detects the reduced speed.
5.  The governor weights drop and cause the fuel rack servo system to actuate.
6.  The fuel rack moves to increase the fuel supplied to the injectors and therefore the power from the engine.
7.  The lever (mentioned in 2 above) is used to reduce the pressure of the governor spring.
8.  When the engine has responded to the new control and governor settings, it and the generator will be producing more power.

On locomotives with an alternator, the load regulation is done electronically. Engine speed is measured like modern speedometers, by counting the frequency of the gear teeth driven by the engine, in this case, the starter motor gearwheel.  Electrical control of the fuel injection is another improvement now adopted for modern engines. Overheating can be controlled by electronic monitoring of coolant temperature and regulating the engine power accordingly. Oil pressure can be monitored and used to regulate the engine power in a similar way.

Cooling

Like an automobile engine, the diesel engine needs to work at an optimum temperature for best efficiency.  When it starts, it is too cold and, when working, it must not be allowed to get too hot.  To keep the temperature stable, a cooling system is provided.   This consists of a water-based coolant circulating around the engine block, the coolant being kept cool by passing it through a radiator.

The coolant is pumped round the cylinder block and the radiator by an electrically or belt driven pump. The temperature is monitored by a thermostat and this regulates the speed of the (electric or hydraulic) radiator fan motor to adjust the cooling rate.  When starting the coolant isn’t circulated at all.  After all, you want the temperature to rise as fast as possible when starting on a cold morning and this will not happen if you a blowing cold air into your radiator. Some radiators are provided with shutters to help regulate the temperature in cold conditions.

If the fan is driven by a belt or mechanical link, it is driven through a fluid coupling to ensure that no damage is caused by sudden changes in engine speed.  The fan works the same way as in an automobile, the air blown by the fan being used to cool the water in the radiator.  Some engines have fans with an electrically or hydrostatically driven motor.  An hydraulic motor uses oil under pressure which has to be contained in a special reservoir and pumped to the motor.  It has the advantage of providing an in-built fluid coupling.

A problem with engine cooling is cold weather.  Water freezes at 0°C or 32°F and frozen cooling water will quickly split a pipe or engine block due to the expansion of the water as it freezes.  Some systems are “self draining” when the engine is stopped and most in Europe are designed to use a mixture of anti-freeze, with Gycol and some form of rust inhibitor.  In the US, engines do not normally contain anti-freeze, although the new GM EMD “H” engines are designed to use it.  Problems with leaks and seals and the expense of putting a 100 gallons (378.5 litres) of coolant into a 3,000 hp engine, means that engines in the US have traditionally operated without it.  In cold weather, the engine is left running or the locomotive is kept warm by putting it into a heated building or by plugging in a shore supply.  Another reason for keeping diesel engines running is that the constant heating and cooling caused by shutdowns and restarts, causes stresses in the block and pipes and tends to produce leaks.

Lubrication

Like an automobile engine, a diesel engine needs lubrication.  In an arrangement similar to the engine cooling system, lubricating oil is distributed around the engine to the cylinders, crankshaft and other moving parts.  There is a reservoir of oil, usually carried in the sump, which has to be kept topped up, and a pump to keep the oil circulating evenly around the engine.  The oil gets heated by its passage around the engine and has to be kept cool, so it is passed through a radiator during its journey.  The radiator is sometimes designed as a heat exchanger, where the oil passes through pipes encased in a water tank which is connected to the engine cooling system.

The oil has to be filtered to remove impurities and it has to be monitored for low pressure. If oil pressure falls to a level which could cause the engine to seize up, a “low oil pressure switch” will shut down the engine. There is also a high pressure relief valve, to drain off excess oil back to the sump.